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The transient motion that arises in a confined rarefied gas as a container wall is 
rapidly heated or cooled is simulated numerically. The Knudsen number based on 
nominal gas density and characteristic container dimension is varied from near- 
continuum to highly rarefied conditions. Solutions are generated with the direct 
simulation Monte Carlo method. Comparisons are made with finite-difference 
solutions of the Navier-Stokes equations, the limiting free-molecular values, and 
(continuum) results based on a small perturbation analysis. The wall heating and 
cooling scenarios considered induce relatively large acoustic disturbances in the gas, 
with characteristic flow speeds on the order of 20 % of the local sound speed. Steady- 
state conditions are reached after on the order of 5 to 10 acoustic time units, here 
based on the initial speed of sound in the gas and the container dimension. As 
rarefaction increases, the initial gas response time is decreased. For the case of a 
rapid increase in wall temperature, transient rarefaction effects near the wall greatly 
alter gas response compared to the continuum predictions, even at  relatively small 
nominal Knudsen number. For wall cooling, the continuum solution agrees well with 
direct simulation at  that same Knudsen number. A local Knudsen number, based on 
the mean free path and the scale length of the temperature gradient, is found to be 
a more suitable indicator of transient rarefaction effects. 

1. Introduction 
The determination of local properties in a gas confined between two plates 

maintained at different temperatures is a fundamental problem in both continuum 
gas dynamics (Schlichting 1960) and gas kinetic theory (Patterson 1971). The 
transient development of this flow as induced by rapid heating or cooling of one or 
both of the walls is less well understood, though it has features of interest to problems 
in combustion, acoustics, and shock wave and boundary-layer theory. 

Recently EC class of micromechanical devices has been proposed (Muntz et al. 1992) 
which would utilize rapid heating and cooling of a small volume of gas in a thermal 
cycle to generate mechanical work. Rapid heating of a container wall is one of several 
means available to deposit energy in the gas. These devices will typically operate at  
standard atmospheric densities but will have a characteristic dimension h on the 
order of m. The nominal Knudsen number, based on the lengthscale h and the 
hard-sphere mean free path A,, is of the order of 0.002 for such conditions. 
Generalization (Bird 1983) of the hard-sphere mean free path to account for the 
variation of collision cross-section with temperature leads to larger nominal Knudsen 
numbers at  the elevated operating temperatures of interest. Under these transitional 
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rarefied conditions a purely continuum analysis could be subject to large error. An 
additional issue for the transient problem are the large gradients that initially arise 
in the flow field. I n  the case of a rapidly heated container wall, for example, these 
disturbances can develop into shock waves which propagate across the gas (Clarke, 
Kassoy & Riley 1984a,b). A Knudsen number based on the local mean free path 
and the scale length of the gradient of temperature (Present 1958; Bird 1976) across 
these disturbances is much larger than the nominal Knudsen number. Hence, the 
Navier-Stokes equations may be inaccurate over a sizable portion of the flow field 
during the initial transient period. In either case, the effect of rarefaction on the 
transient solution, and the deviation of this solution from that predicted from a 
purely continuum standpoint are of interest. 

To address these issues, we consider the model problem of a gas confined between 
infinite parallel plates and analyse the transient gasdynamic phenomena that 
develop as one wall is instantaneously cooled or heated to a new temperature. A 
nominal Knudsen number range of O(O.03)-O(0.4) and a wall temperature ratio of 
O(4) are considered for the case of a monatomic gas. The details of the gas-surface 
interaction process are expected to have a definite impact on the flow field as 
rarefaction increases. Owing to the uncertainties in general analytical models for this 
process, consideration is restricted to the case of a perfectly diffuse wall. A related 
paper (Wadsworth 1992) addresses in more detail the effect of the interaction model 
on the steady-state profiles. 

The present authors are aware of no experimental data for this problem. There 
exist, however, steady-state data (Alofs, Flagan & Springer 1971) corresponding to 
the conditions considered herein. These data have been used in Wadsworth (1992) to 
validate the present numerical schemes. In  the present paper, we compare results 
from the direct simulation Monte Carlo (DSMC) method (Bird 1976) wherein 
molecular motion is directly modelled, with results of finite-difference solutions of 
the (no-slip) Navier-Stokes (NS) equations, the free-molecular values, and with the 
approximate (continuum) perturbation results of Clarke et al. (1984a, b ) ,  Radhwan & 
Kassoy (1984) and Kassoy (1979) valid for small times after the initiation of wall 
heating. 

2. Problem definition 
Consider the model problem geometry shown in figure 1. Two infinite parallel 

plates separated by a distance h and initially a t  temperatures Tw, = Tw, = To enclose 
a gas of nominal number density no and temperature To. The transient gasdynamic 
phenomena that develop as one wall is instantaneously brought to a new temperature 
are of interest. 

Two distinct initial conditions arise. I n  case I the temperature of wall 2 is increased 
to xT,, while for case I1 the temperature of wall 1 is decreased to T,/x. Here x = 3.72 
and To = 79 K or To = 294 K have been chosen to correspond to the (steady-state) 
data of Alofs et al. (1971). Owing to the low temperatures involved we consider only 
a monatomic gas (helium), thought the previous reference does contain data for 
diatomic nitrogen. 

A characteristic rarefaction parameter, the Knudsen number, Kn, = h,/h, can be 
used to estimate the gasdynamic phenomena expected. We consider variations in the 
gas density such that near-continuum to highly rarefied gasdynamic phenomena are 
experienced. At higher Knudsen number indicative of more rarefied conditions, 
the details of the gas-surface interaction process a t  the plate surface are expected 



Transient motion of a conjined rarejed gas 

=,, 

FIGURE 1. Schematic of problem geometry. 
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to become increasingly important in establishing the flow field. Lacking accurate 
models for this process, consideration is limited to the case where the plates are 
perfectly diffuse reflectors at  the wall temperature. This assumption will allow direct 
assessment of bulk rarefaction effects. Some estimates of the influence of the wall 
model are made below, however. 

The nominal Knudsen number is not useful in quantifying the transient rarefaction 
processes which arise. Also, definition of a characteristic time parameter for this 
unsteady problem is ma,de difficult by the lack of definite periodic phenomena. The 
acoustic and condition times discussed below are the most useful timescales which 
can be determined a pr ior i .  

3. Theory 
Clarke et al. (1984a,b), Radhwan & Kassoy (1984) and Kassoy (1979) have 

considered the continuum wall heating problem extensively, and have given a 
sophisticated analytical exposition based on perturbation methods. They have also 
presented numerical calculations in support of their analytical results. Here we 
summarize their results and discuss major differences in the present problem. In their 
analyses, the ratio between the acoustic time t ,  and the conduction or diffusion time 
t, is used as the small parameter in the perturbation approach. Here, t, = h/a, where 
a, is the speed of sound in the gas at the initial temperature and t,  = h2/a, where a, 
is the thermal diffusivity of the gas. The ratio between these two timescales can be 
identified as a nominal Knudsen number with the additional assumption that the 
Strouhal number St = 1. Based on these timescales, the analysis shows the gas near 
the wall to be made up of a conduction zone (or boundary layer), and an isentropic 
core. The expansion of the conduction zone and its effect on the core gas is the 
fundamental basis of the piston analogy (Moody 1990) typically used in compressible 
flow analysis. 

The distinct transient features which arise in the gas can be categorized based on 
the amplitude and time over which heat addition at  the boundary is applied. For the 
case of small and slow (based on t,)  wall heating (Kassoy 1979; Radwhan & Kassoy 
1984), a linear acoustic field develops where the gas pressure is spatially homogeneous 
and rises monotonically to its steady-state value. Owing to acoustic effects, the gas 
response time is shorter than that of an equivalent heat-conducting solid (see also 
Larkin 1967). 

In the case of large and rapid (compared to t,) heat addition rates (Clarke et al. 
1984a, b ) ,  the analysis retains the full Navier-Stokes equations and predicts the 
development of a shock wave which propagates away from the heated wall. Similar 
wall heating and cooling rates are considered here. Several key differences exist 
between this and the previous work, however. 

(i) In the continuum limit, analysis of the relatively slow heating rate problem 
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must be explicitly restricted to the case of a gas in zero gravity. This is required to 
eliminate buoyancy and free convection effects which would mask the wall-induced 
phenomena, In the rarefied problem, the gas density arises as a parameter through 
the Knudsen number. The characteristic free convection parameter, the Grashof 
number, can then be written as Gr - Kni2.  For all cases considered, Gr is several 
orders of magnitude below that at  which convection effects are expected (Eckert & 
Carlson 1961 ; Alofs et aE. 1971). Under rarefied conditions, the induced motion is thus 
experimentally accessible over the whole range of heat addition rates. In fact, the 
magnitude and timescales of the phenomena of interest are such that detailed 
measurements of both macroscopic and microscopic quantities can be made. The 
present results are of use in defining such an experiment. 

(ii) Under the case of rapid boundary heating, the development of large-amplitude 
(nonlinear) waves restricts the aforementioned analytical results to very small 
times, i.e. where an acoustic disturbance has travelled much less than the gap height, 
t 4 t,. In fact, the confined nature of the gas does not directly arise in the analysis, 
and the parameter h is carried through only for pedagogical reasons (Clarke et al. 
1 9 8 4 ~ ) .  Under those limitations, the perturbation results are more suited to the 
Rayleigh problem. There, the motion induced in a semi-infinite expanse of gas as a 
bounding wall is instantaneously given a new temperature or heat flux value is of 
interest. Aoki et al. (1991) have recently considered this problem using a model form 
of the Boltzmann equation. Both of these analyses are useful in characterizing the 
initiation of the disturbances, but are not of use in understanding of the overall 
relaxation process. The interaction between the induced gas disturbances and the 
bounding walls, which make the analytical approach intractable, are the dominant 
features in the relaxation. These events, and the effect of rarefaction upon them, are 
quantified here by numerical simulation. 

For the temperature ratios considered herein a definite acoustic disturbance arises 
and crosses the gas several times before steady-state conditions are reached. The 
maximum induced bulk velocity in the gas is of the order of 20% of the local speed 
of sound. In an actual gas-driven micromachine much larger temperature ratios, and 
thus much stronger disturbance fields, will arise. 

(iii) The aforementioned analysis allows definition of a general wall heat flux 
function. In the case of rapid heating, such as would result in the development of 
shock waves, a constant heat flux and thus a constant energy flow into the gas was 
typically assumed. This leads to a fundamental description of the piston analogy 
discussed above. Here, in deference to a realistic mechanical system, we consider a 
wall medium with a characteristic temperature response time of a few gas collision 
times. As a result, the wall heat transfer rates are not known apriori. Large temporal 
variations will arise as the disturbances travel across the gas. Larkin (1967) presents 
calculations using a simplified continuum model which qualitatively show the 
relative differences between the constant temperature and constant heat flux cases. 
Finally, note that for the case of wall cooling, expansion rather than compression 
waves will propagate through the gas and determine the transient relaxation. 

4. Approach 
A variety of analytical and numerical schemes have been proposed for application 

to rarefied gasdynamic flows. The second-order approximation to the Boltzmann 
equation under the Chapman-Enskog expansion, i.e. the Burnett equations, have 
recently been shown to provide improved results compared to the Navier-Stokes 
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equations for certain applications (Fiscko & Chapman 1988 ; Pham-Van-Diep, Erwin 
& Muntz 1991 ; Zhong, MacCormack & Chapman 1991). As with the Navier-Stokes 
equations, these appear to be limited by the lack of a physically realistic and 
accurate boundary condition model. The Burnett equations contain (second-order) 
correction terms to the Navier-Stokes stress tensor and heat flux vector. The 
additional terms will be non zero for the unsteady problem of interest here. In the 
steady-state limit, however, the Burnett heat flux vector reduces to that of the 
Navier-Stokes equations, though the normal component of the pressure tensor 
retains additional terms (Wadsworth 1992). 

Techniques based on more direct solution of the Boltzmann equation (or a 
simplified form) can be generally grouped into moment methods (Liu & Lees 1961), 
finite-difference (Huang 1967; Huang & Hwang 1973) or iterative (Willis 1962) 
solution of a model equation, or direct simulation (Bird 1976). Here we utilize the 
direct simulation approach. 

Perlmutter (1967) has considered the present problem in the free-molecular limit. 
Here the Boltzmann equation becomes 

af af -+ w- = 0, 
at ay 

to be solved for the molecular velocity distribution functionf = f(y, w ;  t ) .  The general 
solution to this equation is f =f,(y-wt, w), where f, is the initial condition on f. In  
other words, the distribution function propagates unchanged along the charac- 
teristics y -wt. Consideration of general boundary conditions leads to a multiple 
reflection problem (Bird 1976) requiring solution of coupled Fredholm integral 
equations. Perlmutter has derived integral equations for the flux of a general 
macroscopic quantity at any point in the gas for the case of a step increase or 
decrease in the wall temperature. The equations must be solved numerically. An 
alternative, but less efficient means to generate the free-molecular solution is to 
apply a DSMC scheme modified to circumvent the collision subroutine. 

In this paper, we utilize time-accurate finite-difference solution of the no-slip 
Navier-Stokes equations (MacCormack &, Baldwin 1975) to establish a reference 
continuum solution a t  the lowest Knudsen number considered (Kn, = 0.033), and the 
probabilistic DSMC method of Bird (1976) for calculations over the complete range 
of conditions. This finite-difference scheme is formally of higher temporal accuracy 
than that used by Clarke et al. (1984a,b). It has been validated on a wide range of 
both steady and unsteady problems and will not be discussed in detail here. 

The implementation of boundary conditions for the finite-difference solution is 
rather important, however. The instantaneous change in the wall temperature can 
lead to certain non-physical results for small times after initiation. For example, the 
finite-difference approximation for the initial heat flux directed into the gas from the 
heated wall can be written as qw = (Twz-T,)/Ay,. The inverse dependence on cell 
spacing at  the wall, along with the increase of the boundary temperature on a 
timescale of the order of one molecular collision time in the gas leads to unrealistically 
large initial wall heat flux values. This in turn leads to larger induced disturbances 
in the gas and thus accelerated transient response. During the initiation event, heat 
transfer into the gas is a non-continuum process controlled by molecule impact with 
the wall. One means to account for this in the continuum formulation is to constrain 
the wall temperature increase such that the wall heat flux is bounded by the initial 
free-molecular limit, 
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Here, rn is the gas density and R is the gas constant. This procedure essentially ramps 
the wall temperature to its final value over a period of several collision times. It will 
be shown to qualitatively improve the transient response. A similar procedure can be 
used for the case of wall cooling. Note that this is merely an attempt to improve 
the physical modelling of the initiation event in the NS solution. No numerical 
difficulties arose from the excessive boundary heat flux. 

For a general rarefied flow, the rigorous no-slip boundary conditions are typically 
relaxed through allowance of slip (Gupta, Scott & Moss 1985). Though the slip 
conditions can be formally derived from flux balances across the Knudsen layer, 
several of the assumptions used in their derivation will be violated during the initial 
heating period. As the purpose of this paper is not to address extensions to the 
continuum approach for rarefied conditions, but rather to evaluate general 
rarefaction effects on the transient motion that develops, slip boundary conditions 
are not considered further here. An evaluation of slip models for the steady-state 
problem is given in Wadsworth (1992). 

In the DSMC method the behaviour of a gas is modelled probabilistically. Though 
typically applied to steady gasdynamic problems, the method proceeds in an 
unsteady manner. The simulated molecules are initialized to some reference 
condition, and are subsequently tracked through translation and collision events. 
Macroscopic gas properties are generated by sampling appropriate molecular 
quantities. In an application to a steady problem, this sampling is begun after the 
initial transients in the flow field have decayed. Here, the transient portion is of most 
interest. We utilize ensemble averaging of a series of calculations, identical except for 
the sequence of random numbers used, to reduce statistical scatter inherent in the 
necessarily small sample sizes. The time period over which one sample is generated, 
and thus the minimum temporal resolution, is of the order of one molecular collision 
time. Since macroscopic features develop over several collision times, it is feasible to  
use a ' boxcar ' sampling scheme where several independent samples are accumulated 
and considered to be representative of the state of the gas at some intermediate time. 
For example, the macroscopic quantity z ( t )  at some spatial location is generated from 
the appropriate averaged sampled molecular quantity <(t) as 

Here E is a small time parameter, chosen to be much less than the characteristic 
timescale of any macroscopic motion, i.e. IZ + t,. In practice the integration is 
replaced by a sum over finite increments of time. This means of generating unsteady 
data is necessarily diffusive if IZ becomes comparable to the macroscopic scale. As will 
be seen, macroscopic phenomena have been well resolved for all conditions of interest 
by appropriate choice of E .  

Several variants of the basic DSMC method used here have been developed. Bird 
(1991) has recently presented a source listing of a code suitable for the present 
problem with only minor modifications. The interested reader is referred to  that 
paper for details on the actual implementation of the direct simulation scheme. 

For both the NS and DSMC calculations the gas is modelled as an ideal monatomic 
with a viscosity-temperature dependence given as p - T". The NS calculations 
utilize no-slip boundary conditions, while the diffuse wall is implemented in DSMC 
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nu T., Tw, Q,,, (DSMC) 9,,, (NS) 
Kno (m-7 (K) (K) (Wm-2) (W m-2) 

0.033 6 . 3 2 ~  loz1 79 294 910 1055 
0.075 2 . 8 4 ~  79 294 790 ~ 

0.399 5 . 2 0 ~  lo2' 79 294 370 - 

TABLE 1.  Nominal simulation parameters 

0.033 79 6.90 4 . 3 6 ~  0.027 0.033 294 25.66 2 . 2 6 ~  0.033 
0.075 79 3.10 4 . 3 6 ~  0.061 0.075 294 11.52 2 . 2 6 ~  0.075 
0.399 79 0.57 4 . 3 6 ~  0.325 0.399 294 2.11 2 . 2 6 ~  0.399 

TABLE 2. Parameters for (a) wall heating and (b) wall cooling 

by assigning the post-collision velocity components of molecules incident on the wall 
from an equilibrium distribution at  the wall temperature. In  the continuum limit, 
these two boundary conditions are formally identical. It will be shown that, even 
under conditions of relatively small nominal rarefaction, substantial differences arise 
between the direct simulation and Navier-Stokes models of the initial gas response 
near the walls. This in turn leads t o  large differences in the overall relaxation process. 

5. Results 
Table 1 summarizes the basic simulation conditions (nominal Knudsen number 

Kn,, number density no, wall temperatures T,,, TW2, and the magnitudes of the 
steady-state wall heat flux values (qwss) as predicted by the DSMC and NS 
techniques). The Knudsen number is based on the hard-sphere mean free path for 
helium A, = (2 /  2 .nd2n0)-l and the plate separation h = 2.28 cm. Table 2 defines the 
initial conditions for the cases of wall heating and cooling. These cases differ only in 
the initial temperature of the gas, and thus result in the same steady-state solution. 
Also shown in the tables are the reference pressure po = no kT,, acoustic time t,, and 
the Knudsen number based on the variable hard sphere (VHS) model of Bird (1983) 
evaluated at To. I n  the VHS model, h = h,(T/T,)"-f, where A, is the reference mean 
free path measured at temperature T,, and w is the exponent in the viscosity- 
temperature relation. Here, for helium, A, = A,, T, = 293 K, and w = 0.657 (Bird 
1991). For the present results, the VHS model is used to relate a microscopic 
property (collision cross-section) to a macroscopic phenomenon (the temperature 
dependence of viscosity used in the NS calculation). It is not expected to give a 
quantitative measure of the viscosity of helium at low temperatures. For the range 
of gas temperatures experienced here, the influence of this model is small. Using a 
test-particle Monte Carlo scheme, Koura & Kondo (1969) have qualitatively shown 
the effect of the exponent w on transient and steady-state profiles for a similar 
problem. 

In  the results presented below, figures 2-8 show results for case I, heating of wall 
2 ,  while figures 9 and 10 show results for case TT,  cooling of wall 1.  

Figure 2 gives a qualitative view of the overall relaxation process. Shown are 
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FIGURE 2. NS pressure profiles, case I, Kn, = 0.033. 

t i t ,  
FIQURE 3. Bulk transient pressure response, case I, Kn,, = 0.033 : -, NS ; ----, DSMC ; 

. . . * . . free molecule. 

Navier-Stokes pressure profiles across the gas as a function of time. Here and in the 
following figures time has been normalized by the acoustic time t,, and pressure by 
the initial gas pressure po. The propagation of the initial pressure pulse across the gas 
and its subsequent reflection are clearly evident, as is the slow increase in average 
pressure toward the steady-state value. Other quantities show similar behaviour. 
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FIGURE 4. Transient pressure response at wall 1, cme I, Kn, = 0.033. 

Yoshizawa (1969) has presented unsteady temperature profiles generated with a test- 
particle Monte Carlo scheme for a similar problem (Kn, = 0.5, x = 4). 

By evaluating an average instantaneous pressure of the gas, i.e. 
h 

Ht)  = 1 P(Y, t)dYlh, 
0 

an estimate of the bulk response can be made. Figure 3 compares NS (solid line) and 
DSMC (dashed line) predictions for wall heating under near-continuum conditions, 
Kn, = 0.033. Also shown with a dotted line is the limiting free-molecular value 
predicted by DSMC calculations in which collisions have been neglected. The 
difference between the NS and DSMC values at any time is very near the difference 
in the steady-state values. That difference is a direct measure of the 'slip' effects at  
the wall, indicating a (temperature) slip on the order of a few percent. A reference 
steady-state 'linearized ' continuum value of the pressure, p l ,  estimated by assuming 
a centreline temperature T,, = &Twe + Twl) and density n,, = no is indicated on the 
figure, along with the free-molecular value (Bird 1976). 

Figure 3 is qualitatively similar to figure 4 in Radhwan & Kassoy (1984) which 
considered the case of relatively weak, slow heating. That analysis predicted a 
spatially homogeneous pressure which monotonically increased to the steady-state 
value on a conduction timescale t, 9 t,. For the present conditions, the pressure field 
is far from spatially homogeneous over essentially all of the rise period owing to the 
large heating involved. This feature is quantified in figure 4 where the pressure on 
(unheated) wall 1 is shown as a function of time for the same calculations shown in 
the previous figure. The difference between the NS and DSMC peak pressures greatly 
exceeds that between the steady-state values, indicating large local transient 
rarefaction effects. The propagation of the disturbance across the gas is an acoustic 
phenomenon, and its transit speed is modelled accurately by both the NS and DSMC 
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t l t a  

FIGURE 5 .  Comparison of NS and DSMC heat flux at wall 1, case I, Kn, = 0.033. 

t l  t, 
FIGURE 6. Effect of limiting wall heat flux on NS solution, case I, Kn, = 0.033 : 

~, limited ; ----, unlimited. 

techniques. Under continuum conditions, the leading characteristic travels at 
c = &y+ 1) v+ao, where a, is the initial acoustic speed of the gas and y = g. From 
figure 4 we evaluate an average c ,  c-  i.82a0 and thus an average bulk gas speed 
of B - 0.62a0 during the first transit time. After reflection, the weaker wave predicted 
by DSMC travels through the relatively cooler gas at  a slightly slower speed. 
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t l  ta 

FIGURE 7. Effect of Knudsen number Kn, on transient pressure at wall 1, case I :  -, 
Kn - 0.033; ----, Kno = 0.075; -I-+-, Kn, = 0.399. 0 -  

I n  the free-molecular limit, the bulk gas motion which develops is smaller in 
magnitude and the system reaches steady state more rapidly. The head of the 
pressure disturbance consists of molecules with speeds corresponding to a Maxwellian 
distribution initially at no and Tw,. The peak pressure occurs at a time comparable 
to h/2imp, where wmpo = (2/y) i  a, is the most probable speed. For this Knudsen number 
the free-molecular solution actually gives a better estimate of the peak magnitude of 
the initial pressure disturbance reaching wall 1 than the continuum result. This is 
somewhat fortuitous (see figure 7 ) ,  but is still a useful limiting value. 

Figure 5 compares in detail the wall heat flux (q,,, qw2) transients as predicted by 
the NS and DSMC calculations a t  Kn, = 0.033. The heat flux qw has been normalized 
by the steady-state DSMC value (table 1). The effect of limiting the heat flux from 
the heated wall (wall 2) is clearly seen in the NS result. The limiting occurs during 
approximately one-third of one acoustic time, or ten collision times ( t ,  - Kn, t,). The 
DSMC results show an immediate decrease in q,, from the free-molecular value. The 
relative differences between the peak values of wall 1 heat flux predicted by the two 
solutions are larger than those for pressure (figure 5 ) .  

Figure 6 quantifies the effect of the heat-flux-limited boundary condition on the 
NS results. Compared to  the unlimited values, these qualitatively improve agreement 
with the DSMC results (see figure 5 )  by reducing the strength of the initial 
disturbance. All of the NS results shown utilize the limited boundary condition. 

Figure 7 shows the effect of bulk rarefaction (Kn, = 0.033, 0.075, 0.399) on 
pressure response at wall 1 .  As presaged by the limiting free-molecular results (figure 
4), the effect of increased rarefaction is to decrease the time at which the initial 
disturbance reaches at the wall. The results for Kn, = 0.399 differ only slightly from 
the free-molecular values. The magnitude of the pressure wave depends in a complex 
manner on the rarefaction. In  the continuum analysis Clarke et al. (1984a, b )  find a 
reduction in nominal pressure (i.e. an increase in Kn,) to increase the relative 
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FIGURE 8. Comparison of NS and DSMC velocity, pressure and temperature at y / h  = 0.1, 

case I, Kn, = 0.033. 
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t l  t ,  
FIGURE 9. Transient pressure response at wall 2, case 11, Kn, = 0.033 ; ~ , NS ; ---, DSMC ; 

. , free molecule. . . . . .  

strength of the pressure disturbance due to decreased inertia in the bulk gas. Though 
increasing rarefaction tends to accelerate the local (figure 5 )  and bulk (figure 3) 
response of the system, this gain is offset by the increased slip effects between the gas 
and the wall. As the Knudsen number increases, wall heating is a less efficient means 
of depositing energy into the gas. 
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tits 
FIQTJRE 10. Effect of Knudsen number Kn, on transient properties at  wall 2, case 11. 

-, KTL, = 0.033; ----, Kn, = 0.075; -.-.-, Kn, = 0.399. 

Figure 8 compares NS and DSMC predictions of pressure, temperature, and 
velocity at  a position = 0.1h for Kn, = 0.033. This point is approximately five 
mean free paths from the (cool) wall a t  steady state. As is clear from the previous 
figures, the NS results overpredict the strength of the pressure disturbance and thus 
the induced gas motion, though the transient events are qualitatively similar to the 
DSMC results. The compression pulse initiated at the heated wall at  time zero 
reaches $ in approximately one acoustic time, and induces a bulk gas motion 
downwards, toward the cool wall. The gas speed corresponds to roughly 15 % of the 
local speed of sound. The pressure wave is then reflected off the wall and, as it again 
passes this position, induces a slightly positive velocity in the gas. After two more 
transit times ( < 2ta, due to heating of the interior gas), the disturbance strength has 
decreased by 20 %. The temperature (and thus density) disturbance is smaller in 
magnitude than that for pressure. For reference, the normal Mach number estimated 
by compressible flow theory (Liepmann & Roshko 1957) which leads to this initial 
pressure rise (p2/pl = 1.85) is M = 1.3. 

The general results for the case of wall cooling (of wall 1) are similar to those for 
the wall heating case above. Here, the relaxation process consists of a series of 
expansion waves generated at  wall 1 which subsequently cross the gas. 

Figure 9 shows the pressure response at  wall 2 for Kn, = 0.033 (compare with 
figure 4). Note that properties are normalized by their initial values (table 2b) rather 
than those used in the previous figures. Thus, t ,  here is a factor of (79/294); smaller 
than in the wall heating case. In  the continuum limit the head of the initial 
disturbance travels at a, while the tail travels at a. x-4. As rarefaction increases, the 
distribution of molecular speeds leads to an earlier influence at  the wall. The relative 
difference between the NS and DSMC values is much smaller than that in the case 
of wall heating due to decreased transient rarefaction effects (see below). Figure 10 
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shows the effect of rarefaction on the pressure at  wall 2 (compare with figure 7) .  Here 
the transient behaviour appears monotonic with Knudsen number. 

The present authors are unaware of any detailed assessments of the effect of 
rarefaction on a general unsteady gasdynamic problem. Some DSMC results are 
available regarding the simulation of vortical flows. These include forced vortex 
motion (Bird 1987), Oseen vortex decay (Wetzel & Oertel 1987) and periodic vortex 
shedding from a plate (Koura 1990) or bluff body (Koura 1991). In  the latter paper, 
the impulsive insertion of a body into a rarefied free-stream gas is analogous to the 
boundary temperature rise case considered here. The development of the vortex 
shedding there is seen to be dependent on a bulk Knudsen number, with NS and 
DSMC methods predicting different values for the minimum Kn at which shedding 
begins. Unfortunately, detailed comparisons between the two solutions are not 
made. In the present paper, the continuum (NS) and DSMC results are seen to  be 
quite different even at a relatively small nominal Knudsen number, due to transient 
rarefaction effects near the wall. These local differences in turn alter the bulk flow 
field response. The same fundamentally non-continuum behaviour is to be expected 
in any problem where unsteady gas motion near a boundary arises. This phenomenon 
may well be present in other micromachines and microelectronic devices such as 
accelerometers and fast-response pressure microgauges. 

Clearly, the nominal Knudsen number is a poor measure of the magnitude of 
transient rarefaction effects. A more appropriate parameter must be based on the 
transient features of the problem. One possibility is a Knudsen number based on a 
local mean free path and the scale gradient of the temperature, i.e. 

(Present 1958 ; Bird 1976). This term essentially represents the small parameter 
preceding the perturbation terms in the Chapman-Enskog form of the Navier-Stokes 
distribution function (Bird 1976). It is also present in the formula for temperature 
slip at  a surface if it assumed that the Chapman-Enskog distribution function is 
appropriate at the edge of the Knudsen layer (Gupta et al. 1985). Assuming slip 
corrections are small, the temperature slip becomes 

h dT 
T dn 

- TS - 1 +--, 
T w  

where n is the outward normal at  the surface, and the right-hand side is evaluated 
at the edge of the Knudsen layer. The slip temperature Ts is used to replace the 
(known) no-slip temperature boundary condition T,. By evaluating the local 
Knudsen number near the appropriate walls, we can estimate the transient degree of 
rarefaction and determine qualitatively the utility of the slip corrections in the 
continuum formulation. 

Figure 11 shows results based on NS calculations at  Kn, = 0.033. The solid line 
gives the value O.1h from the heated wall, while the dashed line is the value at  O.1h 
from the cooled wall, and each dataset is plotted versus its acoustic time. Much 
greater rarefaction effects are indicated for the case of wall heating, as was apparent 
from the DSMC comparisons shown in figures 5 and 9. The difference is due mainly 
to the difference in scale lengths between the two cases, i.e. the tendency of the 
compression wave to steepen while the expansion wave flattens. The parameter is not 
a quantitative estimate of transient rarefaction. 
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t l ta  

FIGURE 11. Local Knudsen number Kn, = (A/T) IdT/dy)as predicted by NS solution for 
Kn, = 0.033: -, wall heating, y = 0.9 h ;  ----, wall cooling, y = O.lh. 

Since the local Knudsen number cannot be estimated a priori, it is not of great 
value as a correlation parameter. If we generalize the present problem to consider 
wall temperature ratio x as a parameter, however, it is of use in a bulk sense. Here, 
we can rewrite it as 

Kn, = 2 ~ ~ , x 1 ( 1 - x x ) / ( 1 + x ) l >  

where for our purposes x 9- 1. Koura & Kondo (1969) confirms qualitatively that 
this parameter is more appropriate for the steady-state problem. 

The present results and the studies of vortical motion and shock structure (Fiscko 
& Chapman 1988; Pham-Van-Diep et al. 1991 ; Zhong et al. 1991) referred to earlier 
all appear to show that the motion of an even slightly rarefied gas is described 
mathematically by a set of differential equations more diffusive in nature than the 
Navier-Stokes equations. The additional terms in the Burnett equations are 
dominantly diffusive. For the present problem, these terms may be of non-negligible 
magnitude during the transient phase. Though this problem has direct practical 
application, it also appears to be useful for theoretical analyses into the utility of the 
Burnett equations. 

6. Conclusions 
The response of a confined rarefied gas subject to rapid heating or cooling of a 

container wall has been studied numerically. For the rapid wall temperature changes 
considered here the gas response is better measured by an acoustic, rather than 
conduction, timescale, with steady-state conditions being achieved after roughly ten 
wave crossing times. For the case of wall cooling under slightly rarefied conditions, 
Navier-Stokes solutions agree relatively well with direct simulation Monte Carlo 
results. For wall heating at the same nominal Knudsen number, the continuum 



234 D .  C. Wadsworth, D. A .  Erwin and E.  P. Muntz 

solution is less accurate due to larger transient rarefaction effects. A local Knudsen 
number based on the scale length of the temperature gradient is found to  be a 
qualitative measure of the transient rarefaction. The effect of increasing bulk 
rarefaction leads to different qualitative behaviour between the two cases. For wall 
cooling, transient properties such as wall pressure vary monotonically between the 
limiting continuum and free-molecular values. For wall heating the variation is 
non-monotonic due to the competition between decreasing inertia in the gas and 
decreasing heat flux from the wall; there exists some Knudsen number at which the 
maximum (relative) pressure disturbance can be generated. 

One author (D.C.W.) wishes to  express his gratitude to the Charles Lee Powell 
Foundation for continued fellowship support. This work was supported in part by 
NASA/DOD grant NAGW-1061 and by the University of Southern California. 
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